无机薄膜太阳能电池光伏材料的研究进展Research Progress of Photovoltaic Materials for Inorganic Thin Film Solar Cells
曹希文,张雅希,杨小国,林梅,徐新明
摘要(Abstract):
太阳能是一种清洁、丰富和可持续的能源,能够满足全球日益增长的能源需求。太阳能电池是一种将太阳能转化为电能的能源转化装置,对于国家实现“碳达峰、碳中和”目标和解决未来能源问题等方面将发挥至关重要的作用。薄膜太阳能电池仅有几微米至几十微米的厚度,能够大大减少材料的损耗从而降低成本。本文对目前广泛研究的无机薄膜太阳能电池光伏材料按照组元进行归整,主要有一元体系(如a-Si)、二元体系(如CdTe、Sb_2Se_3)和多元体系[如Cu-Sn-S与Cu-Sn-Se、Cu(In,Ga)Se_2、CsPb(I_(1-x)Br_x)_3、Cu_2ZnSn(S,Se)_4],通过对各类材料结构特点和光电性质进行分析,并结合例证对其电池性能予以解释说明,并对以上各类材料的发展状况进行总结并提出展望。
关键词(KeyWords): 无机薄膜;太阳能电池;光伏材料
基金项目(Foundation): 江西省教育厅科学技术研究项目(GJJ191531)
作者(Author): 曹希文,张雅希,杨小国,林梅,徐新明
DOI: 10.13958/j.cnki.ztcg.2023.01.009
参考文献(References):
- [1]李洪言,李家龙,林名桢,等.“碳中和”背景下2020年全球能源供需分析[J].天然气与石油,2021,39(6):132-143.
- [2]习近平.在第七十五届联合国大会一般性辩论上的讲话[N].北京:中华人民共和国国务院公报,2020.
- [3]黄彦昊,张超,曾令勇,等.碳达峰、碳中和目标下抗CO2双相混合导体透氧膜研究进展[J].材料研究与应用,2022,16(2):183-197.
- [4]KANT N,SINGH P. Review of next generation photovoltaic solar cell technology and comparative materialistic development[J]. Materials Today:Proceedings,2022(56):3460-3470.
- [5]CHODOS A,OUELLETTE A,TRETKOFF E. This month in physics history[J]. American Physical Society News,2009,18(4):5-7.
- [6]BYRNE P,PUTRA N,THIERRY M,et al. Design of a solar AC system including a PCM storage for sustainable resorts in tropical region[J]. Evergreen,2019,6(2):143-148.
- [7]QUITZOW,RAINER. Dynamics of a policy-driven market:The co-evolution of technological innovation systems for solar photovoltaics in China and Germany[J]. Environmental Innovation&Societal Transitions,2015,17:126-148.
- [8]SINGH G K. Solar power generation by PV(photovoltaic)technology:A review[J]. Energy,2013,53:1-3.
- [9]KANT N,SINGH P. Review of next generation photovoltaic solar cell technology and comparative materialistic development[J]. Materialstoday:proceedings,2022,56:3460-3470.
- [10]FTHENAKIS V. Sustainability of photovoltaics:The case for thin-film solar cells[J]. Renewable and Sustainable Energy Reviews,2009,13(9):2746-2750.
- [11]KABIR M,SHAHAHMAD S A,LIM V,et al. Amorphous silicon single-junction thin-film solar cell exceeding 10%efficiency by design optimization[J]. International Journal of Photoenergy,2012,2012:1415-1424.
- [12]HAN G,ZHANG S,BOIX P P,et al. Towards high efficiency thin film solar cells[J]. Progress in Materials Science,2017,87:246-291.
- [13]ZEMAN M. Advanced amorphous silicon solar cell technologies[M]. Wiley-Blackwell,2006.
- [14]AMIN N,KABIR M. High efficiency amorphous silicon thin film solar cells[M]. Lap Lambert Academic Publishing,2014.
- [15]NEHA L,APURV Y. A concise overview of thin fifilm photovoltaics[J]. Materials Today:Proceedings,2022,64:1475-1478.
- [16]NEHA K,SANJAY K,et al. A comparative study of different materials used for solar photovoltaics technology[J].Materials Today:Proceedings,2022.
- [17]HE F,LI J,LIN S,et al. Semitransparent CdTe solar cells with CdCl2 treated absorber towards the enhanced photovoltaic conversion efficiency[J]. Solar Energy,2021,214(18):196-204.
- [18]李辉,刘向鑫.射频磁控溅射制备转化效率高达12.78%的CdTe薄膜太阳能电池[C].上海:中国光伏大会暨国际光伏展览会,2012.
- [19]GEISTHARDT R,TOPIC M,SITES J R. Status and potential of Cd Te solar-cell efficiency[J]. IEEE Journal of Photovoltaics,2015,5(4):1217-1221.
- [20]SABRINA R,SHEIKH R. Photovoltaic performance enhancement in CdTe thin-film heterojunction solar cell with Sb2S3 as hole transport layer[J]. Solar Energy,2021,230:605-617.
- [21]LIU F,ZENG Q,LI J,et al. Emerging inorganic compound thin film photovoltaic materials:Progress,challenges and strategies[J]. Materials Today,2020,41:120-142.
- [22]ZHOU Y,WANG L,CHEN S,et al. Thin-film Sb2Se3photovoltaics with oriented one-dimensional ribbons and benign grain boundaries[J]. Nature Photonics,2015,9(6):409-415.
- [23]ZHOU Y,LENG M,XIA Z,et al. Solution-processed antimony selenide heterojunction solar cells[J]. Advanced Energy Materials,2014,4(8):1-8.
- [24]WANG L,LI D B,LI K,et al. Stable 6%-efficient Sb2Se3solar cells with a ZnO buffer layer[J]. Nature Energy,2017,2(4):17046.
- [25]WEN X,CHEN C,LU S,et al. Vapor transport deposition of antimony selenide thin film solar cells with 7.6%efficiency[J]. Nature Communications,2018(9):2179.
- [26]LI Z,LIANG X,LI K,et al. 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells[J]. Nature Communications,2019(10):125.
- [27]MA C,GUO H,WANG X,et al. Fabrication of Sb2Se3 thin film solar cells by co-sputtering of Sb2Se3 and Se targets[J].Solar Energy,2019,193:275-282.
- [28]REDDY V,PALLAVOLU M R,GUDDETI P R,et al. Review on Cu2SnS3,Cu3SnS4,and Cu4SnS4 thin films and their photovoltaic performance[J]. Journal of Industrial and Engineering Chemistry,2019,76:39-74.
- [29]AVELLANEDA D,NAIR M T,NAIR P K. CuSnS and Cu Sn S Thin films via chemical deposition for photovoltaic application[J]. Journal of the Electrochemical Society,2010,157(6):D346.
- [30]PALLAVOLU M R,BANERJEE A N,REDDY V,et al.Status review on the Cu2SnSe3(CTSe)thin films for photovoltaic applications[J]. Solar Energy,2020,208:1001-1030.
- [31]KUKU T A,FAKOLUJO O A. Photovoltaic characteristics of thin films of Cu2SnS3[J]. Solar Energy Materials,1987,16(1/2/3):199-204.
- [32]KANAI A,TOYONAGA K,CHINO K,et al. Fabrication of Cu2SnS3 thin-film solar cells with power conversion efficiency of over 4%[J]. Japanese Journal of Applied Physics,2015,54(8S1):08KC06.1-08KC06.4.
- [33]MITSUKI N,JUNYA F,TOSHIYUKI Y,et al. Cu2SnS3thin-film solar cells fabricated by sulfurization from Na F/Cu/Sn stacked precursor[J]. Applied Physics Express,2015,8:042303.
- [34]MINGRUI H,JI H,KIM M P,et al. Influence of sulfurization temperature on photovoltaic properties of Ge alloyed Cu2SnS3(CTGS)thin film solar cells[J]. Solar Energy Materials and Solar Cells,2018,174:94-101.
- [35]JAKAPAN C,KOICHI S,TAKASHI M. Introduction of Na into Cu2SnS3 thin film for improvement of its photovoltaic performances[J]. Solar Energy Materials and Solar Cells,2017,168:207-213.
- [36]UMEHARA M,TAJIMA S,AOKI Y,et al. Cu2Sn1-xGexS3solar cells fabricated with a graded bandgap structure[J].Applied Physics Express,2016,9(7):072301.
- [37]KIM S,KIM N H. Impurity phases and optoelectronic properties of CuSbSe2 thin films prepared by cosputtering process for absorber layer in solar cells[J]. Coatings,2020,10(12):1209.
- [38]YU L,KOKENYESI R S,KESZLER D A,et al. Inverse design of high absorption thin-film photovoltaic materials[J].Advanced Energy Materials,2013,3:43-48.
- [39]STEFANO R,FRANCESCO P,MATTEO B,et al. CuSbSe2thin film solar cells with~4%conversion efficiency grown by low-temperature pulsed electron deposition[J]. Solar Energy Materials and Solar Cells,2018,185:86-96.
- [40]YANG B,WANG C,YUAN Z,et al. Hydrazine solution processed CuSbSe2:temperature dependent phase and crystal orientation evolution[J]. Solar Energy Materials and Solar Cells,2017,168:112-118.
- [41]KIM K M,KIM S,TAMPO H,et al. Narrow bandgap Cu2Sn1-xGexSe3 thin film solar cells[J]. Material letters,2015,158:205-207.
- [42]BASAK A,MONDAL A,SINGH U P. Post-growth annealing effect on the performance of Cu2SnSe3 solar cells[J].Materials Research Express,2018,5(10):105505.
- [43]PENEZKO A,KAUK-KUUSIK M,VOLOBUJEVA O,et al.Properties of Cu-Sb-Se thin films deposited by magnetron co-sputtering for solar cell applications[J]. Thin Solid Films,2021,740:139004.
- [44]JAKSON P,HARISKOS D,WUERZ R,et al. Compositional investigation of potassium doped Cu(In,Ga)Se2 solar cells with efficiencies up to 20.8%[J]. Physica Status Solidi(RRL)-Rapid Research Letters,2014,8(3):219-222.
- [45]WONG L H,ZKUTAYEV A,et al. Emerging inorganic solar cell efficiency tables[J]. Journal of Physics:Energy,2019,1(3):032001.
- [46]CHIRIL A,BUECHELER S,PIANEZZI F,et al. Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films[J]. Nature Materials,2011,10(11):857-861.
- [47]STAMFORD L,AZAPAGIC A. Environmental impacts of copper-indium-gallium selenide(CIGSe)photovoltaics and the elimination of cadmium through atomic layer deposition[J]. Science of the Total Environment. 2019,688:1092-1101.
- [48]BANG Y Y,HONG N J,et al. Comparative assessment of solar photovoltaic panels based on metal-derived hazardous waste,resource depletion,and toxicity potentials[J]. International Journal of Green Energy,2018,15(10):550–557.
- [49]ADRIAN C,BUECHELER S. Highly efficient Cu(In,Ga)Se2solar cells grown on flexible polymer films[J]. Nature Materials,2011,10:857-861.
- [50]GLOECKLER M,SITES J R. Band-gap grading in Cu(In,Ga)Se2 solar cells[J]. Journal of Physics and Chemistry of Solids,2005,66(11):1891-1894.
- [51]RUI K. New world record Cu(In,Ga)(Se,S)2 thin film solar cell efficiency beyond 22%[J]. Photovoltaic Specialist Conference,2016,43:3-7.
- [52]REINHARD P,BISSIG B,PIANEZZI F,et al. Features of KF and Na F postdeposition treatments of Cu(In,Ga)Se2 absorbers for high efficiency thin film solar cells[J]. Chemistry of Materials,2015,27(16):5755-5764.
- [53]FOREST R V,ESER E,MCCANDLESS B E,et al. Reversibility of(Ag,Cu)(In,Ga)Se2 electrical properties with the addition and removal of Na:Role of grain boundaries[J].Journal of Applied Physics,2015,117(11):364-371.
- [54]CHIRIL A,REINHARD P,PIANEZZI F,et al. Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells[J]. Nature Materials,2013,12(12):1107-1111.
- [55]WU J L,HIRAI Y,KATO T,et al. New World Record Efficiency up to 22.9%for Cu(In,Ga)(Se,S)2 Thin-Film Solar Cells[C]. 7th World Conference on Photovoltaic Energy Conversion,Waikoloa,Hawaii,2018.
- [56]MITZI D B,GUNAWAN O,TODOROV T K,et al. The path towards a high-performance solution-processed kesterite solar cell[J]. Solar Energy Materials and Solar Cells,2011,95(6):1421-1436.
- [57]WALSH A,CHEN S,WEI S H,et al. Kesterite thin-film solar cells:advances in materials modelling of Cu2ZnSnS4[J]. Advanced Energy Materials,2012,2(4):400-409.
- [58]LI J,WANG D,LI X,et al. Cation substitution in earth-abundant kesterite photovoltaic materials[J]. Advanced Science,2018,5(4):1700744.
- [59]CHEN S,WALSH A,GONG X G,et al. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4earth-abundant solar cell absorbers[J]. Advanced Materials,2013,25(11):1522-1539.
- [60]KATAGIRI H,SASAGUCHI N,HANDO S,et al. Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of EB evaporated precursors[J]. Solar Energy Materials and Solar Cell,1997,49(1-4):407-414.
- [61]FRIEDMEIER T M,WIESER N,WALTER T,et al. Heterojunctions based on Cu2ZnSnS4 and Cu2ZnSnSe4 thin films[C]. 14th European Photovoltaic Solar Energy Conference,1997.
- [62]REPINES I,BEALL C,VORA N,et al. Co-evaporated Cu2ZnSnSe4 films and devices[J]. Solar Energy Materials&Solar Cells,2012,101:154-159.
- [63]TODOROV T K,REUTER K B,MITZI D B. High-efficiency solar cell with earth-abundant liquid-processed absorber[J]. Advanced Materials,2010,22(20):E156–E159.
- [64]WANG W,WINKLER M T,GUNAWAN O,et al. Device characteristics of CZTSSe thin-film solar cells with 12.6%efficiency[J]. Advanced Energy Materials,2014,4(7):1301465.
- [65]CHANG Y,JIALIANG H,KAIWEN S,et al. Cu2ZnSnS4solar cells with over 10%power conversion efficiency enabled by heterojunction heat treatment[J]. Nature Energy,2018,3:764-772.
- [66]LI J,MAI Y,CHEN S,et al. Defect control for 12.5%efficiency Cu2ZnSnSe4 kesterite thin-film solar cells by engineering of local chemical environment[C].北京:第七届新型太阳能电池材料科学与技术学术研讨会,2020.
- [67]KOJIMA A,TESHIMA K,SHIRAI Y,et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society,2009,131(17):6050-6051.
- [68]AKIHIOR,KOJIMA,KENJIRO,et al. Untapped potentials of inorganic metal halide perovskite solar cells-sciencedirect[J]. Joule,2019,3(4):938-955.
- [69]AHMAD M,REHMAN G,ALI L,et al. Structural,electronic and optical properties of CsPbX3(X=Cl,Br,I)for energy storage and hybrid solar cell applications[J]. Journal of Alloys&Compounds,2017,705:828-839.
- [70]KANG Y,HAN S. Intrinsic carrier mobility of cesium lead halide perovskites[J]. Physical Review Applied,2018,10(4):044013.
- [71]ARTHUR,MARRONNIER,GUIDO,et al. Anharmonicity and disorder in the black phases of cesium lead iodide used for stable inorganic perovskite solar cells[J]. ACS Nano,12(4):3477-3486.
- [72]MLLER C K. Crystal structure and photoconductivity of csium plumbohalides[J]. Nature,1958,182(4647):1436-1436.
- [73]EPERON G E,MARIA P G,SUTTON R J,et al. Inorganic caesium lead iodide perovskite solar cells[J]. Journal of Materials Chemistry A,2015,3(39):19688-19695.
- [74]KULBAK M,CAHEN D,HODES G. How important is the organic part of lead halide perovskite photovoltaic cells efficient Cs Pb Br3 cells[J]. The Journal of Physical Chemistry Letters,2015,6(13):2452-2456.
- [75]BEAL R E,SLOTCAVAGE D J,LEIJTENS T,et al. Cesium lead halide perovskites with improved stability for tandem solar cells[J]. Journal of Physical Chemistry Letters,2016,7(5):746-751.
- [76]MA Q,HUANG S,WEN X,et al. Hole transport layer free inorganic Cs Pb IBr2 perovskite solar cell by dual source thermal evaporation[J]. Advanced Energy Materials,2016,6(7):1502202.
- [77]FROLOVA L A,ANOKHIN D V,PIRYAZEV A A,et al.Highly efficient all-inorganic planar heterojunction perovskite solar cells produced by thermal coevaporation of Cs I and PbI2[J]. The Journal of Physical Chemistry Letters,2016,8(1):67-72.
- [78]WANG K,JIN Z,LIANG L,et al. All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%[J]. Nature Publishing Group,2018,9(1):4935-4935.
- [79]WANG Y,DAR M I,ONO L K,et al. Thermodynamically stabilized β-Cs Pb I3–based perovskite solar cells with efficiencies>18%[J]. Science,2019,365(6453):591-595.
- [80]WANG J,ZHANG J,ZHOU Y,et al. Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base[J]. Nature Publishing Group,2020,11(177):1-9.